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Lecture Topics:

Decoders, MUXes, Encoders and DeMUXes
Read-Only Memories
Random Access Memories
Smartphones
Latches and Flip-Flops
State Machine Design
Registers and Counters

DECODERS, MUXES, ENCODERS and DEMUXES

Decoders

Decoders translate an n-bit input codeword into a larger m-bit output codeword, where m ≤ 2n

Example: 7 Segment Decoder (n = 4, m = 7)

Binary decoders (m = 2n), are designed to select an output position
Example: 74138 3-to-8 Decoder (n = 3, m = 8)

n select lines (i.e. C, B, A) determine the active (selected) output Yi, 0 ≤ i ≤ 2n- 1
The remaining m - 1 outputs are inactive



Example: Select output position 3 using active-low & active high 3-to-8 decoders

 
Decoder gate architecture consists of

An array of m ANDing elements forming minterms of select variables
AND gates produce active-high outputs
NAND gates produce active-low outputs

An enable signal E must be in the active state (E = 1) to enable the decoder

Active-low decoder output equations:
Yi = (miE)', 0 ≤ i ≤ 2n-1

Binary decoders may also be employed as SOP Boolean function generators by
Attaching an ORing (summing) element to decoder minterm outputs

OR gate summer for active-high decoders
NAND gate summer for active-low decoders

Example: Implement full adder carry-out



Multiplexers (MUXes)

MUXs connect one of 2n data input lines to one output line
Mechanical switch model:

A 74151 8-to-1 MUX with active-low enable

The data line selected for connection is determined by a set of n input select lines, i.e. C, B, A
MUX gate architecture consists of

A decoder plus
An ORing element
An enable signal E that must be in the active state (E = 0) to enable the MUX

Data lines Di are ANDed with decoder minterms to provide selection of desired minterms. 
MUX output equation (for an active-low E) is:
Yi = (D0m0+ D1m1+ D2m2+ ...+ D7m7)E'

MUXs may also be employed as a SOP Boolean function generator of the input select lines



Example: More carry-out

Encoders

Translates an n bit dataword into a smaller m-bit codeword, where n ≤ 2m.
Architecture consists of a linear array of m ORing elements. (Not shown)

Demultiplexers (DeMUXes)

DeMUXes connect one input data line to one of 2n output lines
Mechanical switch model:

A 1-to-8 MUX with an active-high enable

The output line selected for connection is determined by a set of n output select lines, i.e. C, B, A.
A DeMUX gate architiecture can be realized from a decoder circuit by utilizing enable E as the DeMUX data input
line D



A 74138 3-to-8 decoder with data input D connected to E:

The DeMUX output equation is: Yi = (miD)', 0 ≤ i ≤ 7

Quiz #6 & selected solutions

READ-ONLY MEMORIES

ROM Basics

A ROM is a programmable truth table consisting of a
n-bit address input (selects a word of memory)
m-bit data output (the data bits that fit into one word)

ROM block diagram:

ROM capacity is: C = 2n x m (bit contents of the ROM)

ROM Implementations

http://homepages.wmich.edu/~johnson/ece2500/Quiz6/quiz.html
http://homepages.wmich.edu/~johnson/ece2500/Lecture_Slides/Quiz6.pdf


Decoder (selects a word)

Encoder array (encodes and stores the word)

Historically 5 kinds of ROM implementations
ROM (mask)
PROM (programmable ROM):
EPROM (erasable-programmable ROM)
EEPROM (electrically-erasable PROM)
Flash (fast block-based EEPROM)

  
Encoding Techniques

Diode-fuse array
computer.howstuffworks.com/rom3.htm
MOS transistor-fuse array
Double gate MOS transistor array

 

 

 

 

 

 

 

 

 

http://www.computer.howstuffworks.com/rom3.htm


ROM Transistor Circuitry
Three examples:

PROM
Decoder transistor array:

Selected row of decoder (row 0 with address 000) with high output:

Nonselected row of decoder (row 0 with address 010) with low output:



Encoder transistor-fuse array:

PROM encoder cell, showing ith word & jth bit lines plus fuse:
0 ≤ i ≤ 2n-1, 0 ≤ j ≤ m-1

      
An intact fuse connects a 0:

A blown fuse connects a 1:

 



 
EPROM

Decoder transistor array is used, as before.
Encoder transistors employ a floating gate to connect outputs:

EPROM encoder cell, showing ith word and jth bit lines plus a transistor having a chargeable red floating
gate:

 
Cell transistor (uncharged) turns ON, connects a 0

Cell transistor (charged) stays OFF, connects a 1

EPROM Encoder array:



Flash memories: from wikipedia.com
Double-gate implementation on transistors
NOR flash (like EPROM, can access individual bytes)
NAND flash (physically smaller, but can access only blocks of bytes). Current technology used by portable
music players.

Programmable Gate Arrays (PGAs)

A PGA is a programmable logic device that sums p configurable product terms (not just minterms) to quickly
implement logic functions.

Traditional PGAs are built using AND-arrays
Each PGA will sum p products.
Each p-term is formed from an AND-array having 2*n input lines
An AND-array has size p x 2*n.
A PGA has m AND arrays which implement m logic functions.

A PLD is a P-logic device having one or more PGA implementations
Example:A PLD (p = 2, m = 5) implementing 5 simple functions

AND function:

OR function:

NAND function:

http://en.wikipedia.org/wiki/Flash_memory#NAND_flash


NOR function:

XOR function:

Dots (or x’s) show connections.
No dot (or x) implies no connection.
Dots are placed during the process of downloading a data bit stream

The Artix-7 FPGA (field PGA) used in the lab has a look-up table (LUT) organization
LUT has 6 inputs and 1 output
Constructed from a matrix of 5 by 4 = 20 configurable logic blocks (CLB). The CLB has 2 slices, each slice
having

24 inputs (n = 24)
4 LUTs (m = 4) outputs
20 CLBs thus support 960 inputs and 160 outputs!

  Graphics by Xilinx
Advantages of FPGAs:

Can handle error sources such as latch ups in the logic by
Triple mode redundancy (TMR)
Epitaxial radiation hardening
Scrubbing (reprogramming)

Quiz #7 & selected solutions

RANDOM ACCESS MEMORIES

RAM Basics

A RAM is a rewritable truth table that can
Read data (read a word from the table)
Write data (write a word to the table)

n-bit address input (selects a word)
m-bit data input/output determines word length:

http://homepages.wmich.edu/~johnson/ece2500/Quiz7/quiz.html


m = 8 bits (1 byte)
m = 16 bits (2 bytes)
m = 32 bits (4 bytes)
m = 64 bits (8 bytes)
m = 128 bits (16 bytes)

Binary data orders of magnitude: http://en.wikipedia.org/wiki/Orders_of_magnitude_(data)
XBox Series X vs Playstation 5: Both AMD Zen 2 CPU, m = 256 (32 B) and https://www.tomsguide.com/news/ps5-
vs-xbox-series-x
Capacity

Formulas:
C = 2n x m b (in bits)
C = 2n B (in Bytes if m = 8)
C = 2n x m/8 B (in Bytes in general)

Prefixes:
210 = K (Kilo) [Alt acronym: Kibi]
220 = K*K = M (Mega) [Alt acronym: Mebi]
230 = K*M = G (Giga) [Alt acronym: Gibi]
240 = K*G = T (Tera) [Alt acronym: Tibi]

Sizes:
C = (2n x m/8)/210 → C KB (in Kilo Bytes)
C = (2n x m/8)/220 → C MB (in Mega Bytes)
C = (2n x m/8)/230 → C GB (in Giga Bytes)
C = (2n x m/8)/240 → C TB (in Tera Bytes)

Examples:
n = 14, m = 8

n = 26, m = 8

RAM Organization and Type

Addressing (selecting a word)
1D decoding (Straight decoding)

n-bit physical address.
Address size = n

http://en.wikipedia.org/wiki/Orders_of_magnitude_(data)
http://www.anandtech.com/show/6972/xbox-one-hardware-compared-to-playstation-4/3


Row decoder selects m-bit word

Example: n = 14, m = 8: C = 16 KB

2D decoding (row decoders and column MUX)
nr-bit row decoding
Reuse nc ≤ nr for column decoding
Address size: n = nr +nc

Example: nr= 14, nc= 12, m = 8: C = 64 MB



2D decoding with bank organization
Address has nr and nc bit row decoding as before
Address also includes 1 or more bank lines nb
Address size: n = nr + nc + nb

Example: nr= 14, nc= 12, nb= 2, m = 8: C = 256 MB

Memory packaging:
computer.howstuffworks.com/ram4.htm

SIMM (single in-line memory module)
DIMM (dual in-line)
SODIMM (small outline dual in-line)

Memory acronyms:
SRAM Static RAM (Used for registers, and caches)

http://computer.howstuffworks.com/ram4.htm


DRAM Dynamic RAM (older memories)
SDRAM Synchronous Dynamic RAM (current memories)
DDR SDRAM Double Data Rate SDRAM (latest memories)
LPDDR SDRAM Low Power Double Data Rate SDRAM (latest memories)
GDDR (Graphics Double Data Rate memories)

Dynamic Memory
Synchronous Dynamic (SD) (self-refreshing)
Double Data Rate (DDR) SD (faster)

DDR2 = "2x more"
DDR4 = "4x more"
LPDDR4 = Low Power "4x more"

Cell organization
Single transistor.
Storage provided by capacitor, which leaks and requires refreshing by CPU.

 Graphics by quora.com
DRAM cell showing ith word and jth bit lines plus capacitor:
0 ≤ i ≤ 2n-1, 0 ≤ j ≤ m-1



Write a 1 (charges capacitor):

Reading a 1 or 0:

     
Dynamic RAM (DRAM) layout example

Decoder transistor array, as before.
Encoder transistor array

Two data lines for each cell
Read: senses presense of charge in capacitors between selected and nonselected word. Charge = 1,
no charge = 0
Write: charges capacitors for cells where data = 1 in selected word (write operations shown below)

 

 



Cell access provided by transitors with word line (W)
Bidirectional bit lines (B, B') connect to (Q, Q')

SMARTPHONES

iPhones and Androids

Mobile Communication Device
Cell phone (voice/texting)
Media player (music/video)
Internet Browser (web/email/facebook/twitter)
Camera

iPhone design

iPhone 16 Pro Max inside view
https://www.youtube.com/watch?v=PHQD4FcsOvs

 ifixit.com

iPhone 16 Pro Main board top and back https://www.ifixit.com/Guide/iPhone+16+Pro+Chip+ID/177358

https://www.youtube.com/watch?v=CiygcIFWOj4


Apple iPhone block diagram (7/2010)

iPhone Block Diagram Components
Application and Baseband Processors
DDR SDRAM
NAND Flash
NOR Pseudo SRAM
Cell phone Transceiver & Power Amps
Accelerometer/Magnetometer
WiFi and Bluetooth Transceiver
Magnetometer/Accelerometer/Gyroscope
3-Axis Gyroscope introduced by Steve Jobs, 2010
USB & Audio Ports
Battery

 Android design

https://youtu.be/4-MsSAdgyWY?t=2819


Samsung Galaxy block diagram (9/2010):

HTC Incredible block diagram (1/2011)

Storing and Playing Music

Example: Storing Music
Music is sampled at 44,100/sec using 2B for each sample
Thus a three minute song file size is 32MB.
This song is then compressed to 3.2 MB to store in flash
32GB of flash can store 10,000 3 minute songs
The song is decompressed to RAM where it is played as a 32MB song



Example: Streaming Music
A 3.2 MB song is streamed on WiFi and is routed to Audio-Codec
A three minute song is streamed at a rate of 142.2 Kb/sec
The Audio-Code decodes the song back to 32 MB and is played in real time or is stored in RAM

Terminology:

ARM: Advanced Risc Machines, Ltd.
Makes reduced instruction set processor templates
Licensed by virtually all major cell phone manufacturers

Processor license: Android
Architecture license: Apple (iPhone 5 and later)

Requires less transistors and power



SoC: System on a Chip

Fabrication of major components of a smartphone onto a single chip
Typical integrations:

Communications (Baseband Processor)
Application Processor (CPU)
Graphics Processor (GPU)
Memory

Applications Processor
CPU
GPU
NPU
Controller
Apple A17 chip -> 2023 iPhone 15 Pro

Image: Semi Analysis
Apple A18 chip -> 2024 iPhone 16 Pro

Image: MacWorld

Some History www.anandtech.com/tag/smartphones

iPhone 4 (2010)
A4 SoC = ARM Cortex A8 (800MHz) plus an
Imag Tech PowerVR SGX 535 GPU
512 MB RAM

Samsung Galaxy S1 (2010)
Exynos 3 SoC = ARM Cortex A8 (1 GHz), plus a
Power VR SGX540 GPU
512 MB Mobile DDR RAM

HTC Droid Incredible (2010)
Snapdragon S1 SoC = Qualcomm QSD8650 (1 GHz) plus a
Qualcomm Adreno 200 GPU
512 MB RAM

iPhone 4s (2011-12)
A5X SoC = ARM Cortex A9 (1 GHz, dual core) plus an
Imag Tech PowerVR SGX 543MP4 (4 GPUs)
512 MB RAM

Samsung Galaxy S3 (2012)
Snapdragon S3 SoC = Qualcomm MSM8960 (1.5 GHz, Krait 200 dual core), plus a

http://www.anandtech.com/tag/smartphones


Qualcomm Adreno 250 GPU
2 GB RAM

HTC One S (2012)
Snapdragon S4 Krait SoC = Qualcomm MSM8260A (1.5 GHz, Krait 300 dual core) plus a
Qualcomm Adreno 225 GPU
1 GB RAM

Samsung Galaxy S6 (2015)
Exynos 7420 (4x 2.1/4x 1.5 GHz, Big/LP little hex core), plus a
Mali T760MP8 GPU (772 MHz)
3 GB LPDDR4 RAM

iPhone 6s (2015)
64-bit A9 Enhanced Cyclone SoC = ARMv9 architecture (1.85 GHz, dual core) plus an
Imagination Tech PowerVR Series 4 GT7600 GPU (6 cores)
3D Touch Display and Taptic Engine
4 MB SRAM
2 GB LPDDR4 SDRAM

Samsung Galaxy S7 (2016)
Kyro (2x 2.15/2x 1.6 GHz, Big/LP little quad core), plus a
Adreno 530 GPU (650 MHz)
4 GB LPDDR4 RAM

iPhone 7 (2016)
64-bit A10 Fusion SoC = ARMv10 architecture (4x 2.3 GHz Big/4x LP little hexa-core) plus an
Imagination Tech PowerVR GPU (6 cores)
3D Touch Display and Taptic Engine
8 MB SRAM
2 GB LPDDR4 SDRAM

Samsung Galaxy S8 (2016)
Qualcomm Snapdragon 835 Kyro 280 (2.35/1.9 GHz octa-core), 4x 2MB L2 cache, plus a
Adreno quad-core 540 GPU (670 MHz)
4 GB LPDDR4 RAM

iPhone X (2017)
64-bit A11 Bionic SoC = ARMv11 architecture (2x 2.39 GHz 4x Big/LP little hexa-core) plus an
Apple custom GPU (3 cores)
3D Touch Display and Taptic Engine
2 core neural engine
8 MB SRAM
3 GB LPDDR4X SDRAM

Samsung Galaxy S9 (2018)
Qualcomm Snapdragon 845 Kyro 385 (4x 2.8/4x 1.77 GHz octa-core), 4x 256KB L2, 4x 128KB L2, 2MB L3,
3MB L4 cache, plus a
Adreno dual-core 630 GPU (710 MHz)
4 GB LPDDR4 RAM

iPhone XS (2018)
64-bit A12 Bionic G11P SoC = ARMv12 architecture (2x 2.5/4x 1.59 GHz Big/LP little hexa-core) plus an
Apple custom G11-P GPU (4 cores)
8 core neural engine
3D Touch Display and Taptic Engine
8 MB SRAM
4 GB LPDDR4X SDRAM

Samsung Galaxy S10 (2019)
Qualcomm Snapdragon 855 Kyro 485 (1x 2.84/3x 2.42/4x 1.80 GHz octa-core), 1x 512KB L2, 3x 256KB L2,
4x 128KB L2, 2MB L3, 3MB L4 cache, plus a
Adreno dual-core 640 GPU (??? MHz)
6 GB LPDDR4 RAM

iPhone 11 Pro (2019)
64-bit A13 Bionic G11P SoC = ARMv13 architecture (2x 2.66 (Lightning)/4x 1.73 (Thunder) GHz Big/LP little
hexa-core) plus an
Apple GPU (4 cores)



8 core neural engine
16 MB SRAM Cache
4 GB LPDDR4X SDRAM

Samsung Galaxy S20 (2020)
Qualcomm Snapdragon 865 SoC (Cortex A77 1x 2.84/Kiro 3x 2.42/4x 1.80 GHz octa-core), plus a
Adreno 650 GPU (587 MHz)
6 GB LPDDR4 RAM
Snapdragon 5G

Google Pixel 5 (2020)
Qualcomm Snapdragon 765 SoC (1x 2.4/1x 2.2/6x 1.8 GHz), plus a
Arm Mali-G77 11-core GPU (??? MHz)
8GB LPDDR4X RAM
Snapdragon 5G

iPhone 12 Pro (2020)
64-bit A14 Bionic SoC = ARMv14 architecture (2x 2.99 (Firestorm)/4x 1.82 (Icestorm) GHz Big/LP little) plus
an
Apple GPU (4 cores)
16 core neural engine
16 MB SRAM Cache
4 GB LPDDR4X SDRAM
5G (sub‑6 GHz and mmWave)

Samsung Galaxy S21 Ultra (2021)
Qualcomm Snapdragon 888 Kyro SoC (Cortex X1 1x 2.84/Kiro 680 3x 2.42/4x 1.80 GHz), plus a

Adreno 660 GPU (750 MHz)
6/8 GB LPDDR5 RAM

Google Pixel 6 Pro (2021)
Google Tensor SoC (Cortex X1 1x 2.80/Cortex A76 2x 2.25/4x 1.80 GHz), plus a
Mail G78 GPU (20 cores)
Google EdgeTPU NPU
8 GB LPDDR5X RAM

iPhone 13 Pro (2021)
64-bit A15 Bionic SoC = ARMv14 architecture (2x 3.24 (Avalanche)/4x 2.0 (Blizzard) GHz Big/LP little) plus
an
Apple GPU (5 cores)
16 core neural engine
32 MB SRAM Cache
6  GB LPDDR5X SDRAM

Samsung Galaxy S22 (2022)
Qualcomm Snapdragon 888 Kyro SoC (Cortex X2 1x 3/A-710 3x 2.50/A-510 4x 1.80 GHz), plus a
Adreno 730 GPU (800 MHz)
8 GB LPDDR5 RAM

Google Pixel 7 Pro (2022)
Google Tensor SoC (Cortex X1 2x 2.85/Cortex A78 2x 2.35/CortexA55 4x 1.80 GHz, plus a
Mali-G710 MP7 GPU
Google EdgeTPU NPU
8 GB LPDDR5X RAM

iPhone 14 Pro (2022)
64-bit A16 Bionic SoC = ARMv14 architecture (2x 3.46 (Everest)/4x 2.02 (Sawtooth) GHz) plus an
Apple GPU (5 cores)
16 core neural engine
32 MB SRAM Cache
6 GB LPDDR5X SDRAM

iPhone 15 Pro (2023)
64-bit A17 Bionic SoC = ARMv14 architecture (2x 3.78/4x 2.11 GHz HP/EE cores) plus an
Apple GPU (6 cores)
16 core neural engine
32 MB SRAM Cache
8 GB LPDDR5X SDRAM



Samsung Galaxy S23 (2023)
Qualcomm 8550 AC Snapdragon 8 Gen 2 SoC Octacore (1x3.36 GHz Cortex-X3 & 2x2.8 GHz Cortex-A715 &
2x2.8 GHz Cortex-A710 & 3x2.0 GHz Cortex-A510 GHz), plus a
Adreno 740 8-core GPU (??? MHz)
8 GB LPDDR5 RAM

Google Pixel 8 Pro (2023)
Google Tensor G3 SoC (Nona-core (1x3.0 GHz Cortex-X3 & 4x2.45 GHz Cortex-A715 & 4x2.15 GHz Cortex-
A510), plus a
Immortalis-G715s MC10 8-core GPU (??? MHz)
Google EdgeTPU NPU
8 GB LPDDR5X RAM

Recent performance enhancements

Apple SoC Relative performance (Image: Anandtech.com)

Plus... A10 ----> 14/16 nm
and.... A11 ----> 10 nm
and.... A12 ----> 7 nm (6.8 B Transistors)
and.... A13 ----> 7 nm (8.5 B Transistors)
and.... A14 ----> 5 nm (11.8 B Transistors)
and.... A15 ----> 4 nm (12 B Transistors)
and.... A16 ----> 4 nm (13 B Transistors)
and.... A17 ----> 3 nm (19 B Transistors)

Reduced power leakage and increased switching speed provided by finFET transistors (Image: Anandtech.com)

Apple Watch

Combination smart device and jewelry (wearable device)
Pairs with iPhone to run apps
Independent cellular



Apple Watch Series 1-10 (2018-24)

S6 Teardown:

(Image: ifixit.com)

S3 SoC, encased in resin

Apple Watch hardware Series 3



390 x 312 resolution display
S3 SoC ARM Cortex A9 (Dual Core, 800 MHz) plus a
8 (16/S4) GB NAND
PowerVR GX??? GPU
3D Touch Display and Taptic Engine
768 MB LPDDR4 SDRAM

Apple Watch Series 4-7 hardware unknown except they have
448 x 368 resolution display
SiP 64 bit dual core processor

Compare S3 with iPhone 4 (2010):
A4 SoC = ARM Cortex A8 (800MHz) plus an
Imag Tech PowerVR SGX 535 GPU
512 MB RAM

LATCHES AND FLIP-FLOPS

Simple Latch Circuit

Performs the simplest kind of binary information storage, using gates.
Circuitry consists of two cross-coupled NAND (or NOR) gates. Inputs (S, R) are active-low.

Latch state is specified by the latch outputs;
Q = 0 indicates the latch is Reset

Q = 1 indicates the latch is Set

There are three modes of operation (changing a Present State to a Next State):



Reset mode (for S = 1, R = 0)

Set mode (S = 0, R = 1)

No Change mode (S = 1, R = 1)

More possibilties shown in truth table:

     



Example: Latch timing diagram (R & S given, find Q)

Data Latch with Enable (D-Latch)

Circuitry consists of a simple latch plus additional logic under the control of an enable signal E and input D.  The D
input is active-high.

There are three modes of operation:
When E = LOW, mode = No Change (this puts the latch to sleep)
When E = HIGH, the two active modes are Reset (D = 0) or Set (D = 1), as determined by D.

The enable input forms the basis of a rudimentary clock signal.
Truth table:



Example: D-Latch timing diagram (given E & D, find Q)

Flip-Flop defined: a SLC which stores one bit of binary information under the control of a set of data input signals and a
Clock

Clock properties:

The nth clock period begins at tn.
The nth+1 clock period begins at tn+1
Tc = tn+1 - tn defines the length of the clock period
fc = 1/Tc, defines the clock frequency
Time and frequency prefixes*:

10-9 = n ↔ G = 10+9

10-6 = µ ↔ M = 10+6

10-3 = m ↔ k = 10+3



Example:

Importance of Clocks: 

Up part defines daytime, when flip-flops are active.
Down part defines nighttime, when flipflops are sleeping.
Flip-flop input signals (i.e. bread for breakfast) must come at night.

Flip-Flop properties

Q = Qn defines the F/F Present State (Region C)
Q = Qn+1 defines the F/F Next State (Region E)
Qn→Qn+1 state transitions occur during the daytime (Region D)
F/F data inputs must arrive the night before state transitions are made (Region C)

Edge-Triggered D Flip-Flop (D F/F)

Loads D input coincident with a clock-pulse edge; subsequent input changes are locked out

There are two active modes of operation:
Reset (D = 0)



Set (D = 1)

State changes (Qn→Qn+1) are triggered on edges of the clock:
Rising edges (↑) for positive edge triggered F/Fs
Falling edges (↓) for negative edge triggered F/Fs

Example: D F/F timing diagram (Clock & D given, find Q assuming positive edge trig.)

D F/F architecture is often augmented by an asynchronous S (or PRE) and R (or CLR) input overrides on the slave
latch.

Application: 4-bit shift register with serial input (see later)

Edge-Triggered Jack/Kill Flip-Flop (JK F/F)

Like D F/F, except with 2 inputs J and K.
(Falling edge clock and active-low preset inputs shown)



There are four active modes of operation:
No Change (J = 0, K = 0)
Reset (J = 0, K = 1)
Set (J = 1, K = 0)
Toggle (J = 1, K = 1)

Example: JK F/F timing diagram (Clock & JK given, find Q assuming negative edge trig.)



Application: 4-bit Counter (see later)

Quiz #8 & selected solutions

 

STATE MACHINE DESIGN

SLC defined: logic circuits whose outputs depend upon state, also called a state machine.

General SLC Block Diagram

The Present State (PS): the bit pattern of the MEMORY ELEMENTS (a register) at a prescribed observation time.
The Next State (NS): the future state of the MEMORY ELEMENTS, formed by the INPUT LOGIC BLOCK.
The OUTPUTS: the present output bit pattern, formed by the OUTPUT LOGIC BLOCK.

SLC Classes

http://homepages.wmich.edu/~johnson/ece2500/Quiz8/quiz.html


Class  A (MEALY) SLC: OUTPUTS are a function of the PS and INPUTS, e.g., Z = f(X,Y).

Class B (MOORE) SLC: OUTPUTS are a function of only the PS, e.g., Z = f(Y).

Class C SLC: OUTPUTS are equal to the PS, e.g., Z =Y.

SLC Variable Notation

X = single input variable or vector of input variables (X1, X2, X3,...).
Y = single state variable (representing flip-flop output Q =Y ) or vector of state variables (Y1, Y2, Y3,...).
Z = single output variable or vector of output variables (Z1, Z2, Z3,...).
Yn= Y = PS, Yn+1= NS

The State Diagram (SD)
(Shows the state to state transitions of a SLC)

Bubbles: represent the SLC states labeled with alphabetic letters (a, b, c, etc.) or with state codes (000, 001, 010,...)
Arrows indicate allowable state transitions (Present to Next):

Mealy: Arrows are labeled with code X/Z (as above)
Moore: Arrows are labeled with X only; bubbles are labeled with code Y/Z.

The State Table (ST)
(Tabulates NS and Outputs verses PS and Inputs of a SD)



Construction:
Examine SD: for every arrow, make a row in the ST having PS Yn, Input X, NS Yn+1 and Output Z.
Example: ST construction

State Trace
(Lists states and outputs for a given sequence of input values)

Trace format
Similar to timing diagram, where X is given and Y and Z need to be filled in:
    X:    X1 X2 X3…           (sequence of inputs Xn)
    Y:    Y1 Y2 Y3....            (sequence of states Yn)
    Z:    Z1 Z2 Z3....            (sequence of outputs Zn)
Example: Given ST & PS, construct trace (X1 = 0 and Y1 = b are given)

State Machine Design Procedure
(The procedure will be illustrated by three examples)
Example#1:

1. Given a set of specifications for a SLC, identify the Inputs and Outputs and draw a Block Diagram (BD). Also,
formulate a State Diagram (SD).



2. Construct a State Table (ST) based on the SD.

3. Program the state table into a lookup table.  Feed the next state output into a D flip-flop.

Example#2:

1. Given a set of specifications for a SLC:
Design a four state counter having a mode control input M

When M = 0, do not count (no change)
When M = 1, count

Identify the Inputs and Outputs and draw a Block Diagram (BD):



Also, formulate a State Diagram (SD):

2. Construct a State Table (ST):

3. Program the state table into a lookup table.  Feed the next state outputs to two D flip-flops.

Example#3:

1. Given a set of specifications for a SLC:
Design a code sequence detector for the code X = 0101



When X = X1X2X3X4 = 0101,
   then Z = Z1Z2Z3Z4  = 0001 (Z4 = 1 when X4 = 1)
Otherwise Zi stays 0

Identify the Inputs and Outputs and draw a Block Diagram (BD):

Formulate a State Diagram (SD)
Right arrows show two possible correct sequences:

State trace following solid right arrow path back to state a:

State trace following dashed-line right arrow to state c, allowing an overlapping sequence:



On the other hand, left arrows indicate incorrect (bad) sequences, and where they should go:

Where the right and left arrows are routed to is determined by the number of overlapping bits. Here are
some general examples:

More specifically, for the right arrow of Example #3, overlapping the X = 0101 good sequence with itself
yields

2 bits of overlap
Routing that goes to state c

Also, overlapping the bad sequence X = 00 (from state a and out of state b) with the good sequence X =
0101 yields:

1 bit of overlap



Routing that goes back to state b

2. Construct State Tables (ST): Lets make two designs based upon different state assignments.
Design #1 State diagram and table. Note that Z= XY1Y2

Design #2 State diagram and table. Note that Z= XY1Y2'

3. Program the state table into a lookup table.  Feed the next state outputs to two D flip-flops.

Quiz #9 & selected solutions

http://homepages.wmich.edu/~johnson/ece2500/Quiz9/quiz.html
http://homepages.wmich.edu/~johnson/ece2500/Lecture_Slides/Quiz9.pdf


REGISTERS AND COUNTERS

Register defined:  a SLC which deals with the storage and transfer of multi-bit data.

Data Transfer Modes

PARALLEL-IN/PARALLEL-OUT = PIPO
SERIAL-IN/SERIAL-OUT = SISO
PARALLEL-IN/SERIAL-OUT = PISO
SERIAL-IN/PARALLEL-OUT = SIPO

Data Latch Register

Performs PIPO data transfers.
Architecture consists of an array of D flip-flops:

Shift Register

Performs primarily SISO data transfers.
Architecture consists of an array of flip-flops connecting inputs and outputs of adjacent F/Fs.

D F/Fs:

JK F/Fs:

Multi-mode shift registers in addition support SIPO, PISO, or even PIPO data transfers



Examples (2 and 6 clock pulse shifts):

Bidirectional shift registers also support left or right data shifts:

A bidirectional shift register multiple additional modes of operation is known as a multifunction register.

Counter defined: a SLC which deals with the generation of multi-bit sequential codes.

Counter Circuit Characteristics

Single or multi-mode operation (up-down, for example)
Synchronous or asynchronous operation
Outputs provide frequency division of input clock signal
Zero reset for termination of count sequence

Single-Mode Synchronous Counter

A synchronous SLC which counts in ascending order.
Architecture consists of an array of JK F/Fs

Driven by a common clock line
Configured to operate in the Toggle (T) or No Change (NC) modes
Toggles activated by ANDing preceeding 1's from prior Q positions



Ripple Counter

An asynchronous SLC which counts in ascending order.
Architecture consists of

An array of JK F/Fs configured entirely in Toggle (T) mode
Clock applied to first F/F only
Successive F/Fs are clocked from outputs of prior F/Fs:

Ripple effect:
Output changes ripple from right to left F/F because...
Clocks (red) are slightly delayed between F/F stages
Transient states (green) appear between stable states (blue)

Examples (4-bit ripple counter):

Quiz #10 & selected solutions

http://homepages.wmich.edu/~johnson/ece2500/Quiz10/quiz.html
http://homepages.wmich.edu/~johnson/ece2500/Lecture_Slides/Quiz10.pdf



